
Week 3 - Wednesday

 What did we talk about last time?
 Process lifecycle
 Started files

 The UNIX file abstraction uses two key ideas:
 A file is a sequence of bytes
 Everything is a file

 This abstraction is different from the traditional idea of files in a
few ways:
 Moving backwards and forwards within a file isn't always possible
 Files don't always have names or live in a particular place
 Files don't always have a set structure

 Even so, creating, deleting, opening, closing, reading, and writing
can be treated the same

 To open a file for reading or writing, use the open() function
 The open() function takes the file name, an int for mode,

and an (optional) mode_t for permissions
 The name refers to an entity somewhere in the directory

structure that might or might not be a normal file
 It returns a file descriptor as an int

int fd = open ("input.dat", O_RDONLY);

 A number of constants specify whether the opening is for reading or writing
 The optional permissions value has other constants to set the permissions of the file when

creating a new one
 Both sets of constants can be bitwise ORed together to make complicated values

Access Meaning

O_RDONLY Open for reading only

O_WRONLY Open for writing only

O_RDWR Open for reading and writing

O_NONBLOCK Do not block on opening while waiting for data

O_CREAT Create the file if it does not exist, requires mode_t argument

O_TRUNC Truncate to size 0

O_EXCL Error if O_CREAT and the file exists

Name Description

S_IRUSR Read (user)

S_IWUSR Write (user)

S_IXUSR Execute (user)

S_IRGRP Read (group)

S_IWGRP Write (group)

S_IXGRP Execute (group)

S_IROTH Read (other)

S_IWOTH Write (other)

S_IXOTH Execute (other)

 The following example shows how to open a file
 For writing
 By creating it
 Truncating its size to 0 if there's already something in the file
 Making it readable and writable to the user and readable to others

 It's also common to use numbers in octal for permissions, where the 64's
place is permission for the user, the 8's place is permission for the group,
and the 1's place is permission for others
 S_IRUSR | S_IWUSR | S_IROTH = 110 000 100 = 0604

int fd = open ("output.dat", O_CREAT | O_TRUNC |
O_WRONLY, S_IRUSR | S_IWUSR | S_IROTH);

 Opening the file is actually the hardest part
 Reading is straightforward with the read() function
 Its arguments are
 The file descriptor
 A pointer to the memory to read into
 The number of bytes to read

 Its return value is the number of bytes successfully read

int fd = open ("input.dat", O_RDONLY);
int buffer[100];
// Fill with something
read (fd, buffer, sizeof(int)*100);

 To close a file descriptor, call the close() function
 Close files when you're done with them

int fd = open ("output.dat", O_WRONLY | O_CREAT | O_TRUNC,
0644);
// Write some stuff
close (fd);

 Linux provides some "special" files
 /dev/full

▪ A file that's says the device is full if you try to write to it, gives unlimited zeroes if you try to
read from it

 /dev/null
▪ A file you can write to forever but simply discards the data (while saying that the write

succeeded)
 /dev/random

▪ A file you can read a stream of random bytes from
 /dev/zero

▪ A file you can read an unlimited stream of zero bytes from
 They're not actually files, but you can treat them as if they are
 They can be useful for testing and sometimes even for the operation of

program

 Let's open /dev/random and read data to fill 10 random
int values

 For some devices, it can be useful to see if the "file" that
represents the device is ready to be read from

 If not, the program can do other things and come back
 The poll() function lets us check to see if a file is ready, instead

of blocking
 First parameter is an array of pollfd structs containing the file

descriptor and the kind of access you want
 Second parameter is the length of the array
 Third parameter is how long to wait for information, in milliseconds

int successes = poll (array, length, 100);

 The following example shows what code is like to check to see
if a file is ready to be read (using the POLLIN constant)

// Set up a single pollfd for the file descriptor fd
struct pollfd fds[1];
fds[0].fd = fd;
fds[0].events = POLLIN; // Looking for input data

if (poll (fds, 1, 100) == 0) // Wait for 100 ms
printf ("Poll failed: %d\n", fds[0].revents);

else
{

printf ("Poll successful!\n");
// Read from the file

}

 Writing to a file is almost the same as reading
 Arguments to the write() function are
 The file descriptor
 A pointer to the memory to write from
 The number of bytes to write

 Its return value is the number of bytes successfully written

int fd = open ("output.dat", O_WRONLY | O_CREAT | O_TRUNC, 0644);
int buffer[100];
for (int i = 0; i < 100; ++i)

buffer[i] = i + 1;
write (fd, buffer, sizeof(int)*100);

 It's possible to move the current location within the file using the lseek()
function

 Its arguments are
 The file descriptor
 The offset (positive or negative)
 Location to seek from:

▪ SEEK_SET (beginning of file)
▪ SEEK_CUR (current location)
▪ SEEK_END (end of file)

 Seeking is more common when reading, but you can seek while writing too

int fd = open ("input.dat", O_RDONLY);
lseek (fd, 100, SEEK_SET);

 The data in the file is the sequence of bytes it contains
 The metadata of a file gives information about the file itself
 Obscure OS stuff like inode number and hard links to the file
 User ID of the owner
 Group ID of the owner
 Device type
 File size

 This information can be stored in a struct stat and retrieved
with:
 fstat() Gets information from a file descriptor
 stat() Gets information from a path

 The following shows some fields in struct stat
 The st_mode field is a bitwise OR of permissions and other

information from the table on the right
struct stat {
dev_t st_dev; // device of inode
ino_t st_ino; // inode number
mode_t st_mode; // protection mode
nlink_t st_nlink; // hard links to file
uid_t st_uid; // user ID of owner
gid_t st_gid; // group ID of owner
dev_t st_rdev; // device type
off_t st_size; // file size in bytes
// Other fields depending on OS ...

};

Name Description

S_IFIFO Named pipe (IPC)

S_IFCHR Character device (terminal)

S_IFDIR Directory file type

S_IFBLK Block device (disk drive)

S_IFREG Regular file type

S_IFLNK Symbolic link

S_IFSOCK Socket (IPC, networks)

 The following code finds out how big a file (stored with file
descriptor fd) is in bytes:

struct stat metadata;
fstat (fd, &metadata);
printf ("File size: %lld bytes\n",

(long long)metadata.st_size);

 Let's write a program that:
 Prompts the user for a file name
 Uses stat() to get metadata about the file
 Print out the size of the file in bytes
 Use the getpwuid() function get login information about the

owner of the file
 Print out the user's login name (the pw_namemember of the
passwd struct)

 Finish files
 Events and signals

 Finish Assignment 2
 Due Friday by midnight

 Start working on Project 1
 Read section 2.7

	COMP 3400
	Last time
	Questions?
	Assignment 2
	Project 1
	Files
	UNIX file abstraction
	Opening files
	Constants
	Example with other constants
	Reading from files
	Closing files
	Special files
	Reading random data
	Polling files
	Polling example
	Writing to files
	Seeking to locations
	File metadata
	Interpreting metadata
	Example getting file metadata
	Practice
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

